
Efficient Hypersonic Signature Analysis Through Amortized

Inference

Ozgur Tumuklu

Mechanical, Aerospace and Nuclear Engineering

Stefan T. Radev

Department of Cognitive Science

Rensselaer Polytechnic Institute

AIAA Paper 2025-2270

Hypersonic Aerothermal Vehicle Analysis (HAVA) Laboratory

www.havalab.org

http://www.havalab.org/


Complex System

Observations

High-Fidelity Simulator
Low-Fidelity Surrogates

Simulate

Emulate

𝜽

෥𝒙

𝜽

Parameters Parameters

ư𝒙

High-fidelity simulations {෥𝒙, 𝜽}

Infer

ML / Physics-
Informed 

Combine

Train Predict

Low-fidelity simulations { ư𝒙, 𝜽}

Motivation

• The identification and characterization of hypersonic radiation signatures 

remain challenging tasks mainly associated with uncertainties arising from 

thermo-nonequilibrium effects, ablation of structural elements, and turbulence.

Lower Dimensionality



Hypersonic Flow Solver
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• An open-source framework* is used to model to model.

• The solver utilizes a first-order explicit Euler scheme for time integration and 

employs a second-order semi-discrete central scheme by Kurganov*, 
complemented by the van Leer limiter for convective fluxes.

*Kurganov, A., and Tadmor, E., “New high-resolution central schemes for nonlinear conservation laws and convection–diffusion 

equations,” Journal of computational physics, Vol. 160, No. 1, 2000, pp. 241–282

OpenCFD Ltd., OpenFOAM: The Open Source CFD Toolbox, 2023. URL https://www.openfoam.com, retrieved from 

https://www.openfoam.com.

Vincent Casseau, An Open-Source CFD Solver for Planetary Entry, Ph.D. Thesis, 2017. 

https://www.openfoam.com/


Numerical Schemes and Flow Conditions

Geuzaine, C., and Remacle, J.-F., “Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities,” , 

2023. URL http://gmsh.info, version 4.9.4

**Knight, Doyle, et al. "Assessment of CFD capability for prediction of hypersonic shock interactions." Progress in Aerospace 

Sciences 48 (2012): 8-26.

Term Schemes

Time stepping First order Euler

Fluxes Kurganov

Gradient Gauss linear 

Divergence Gauss limited linear 

Laplacian Gauss linear corrected

Interpolation vanLeer

Surface normal 

gradient schemes

Grad(U) corrected
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Flow Parameters Range 

Pressure [10-90] Pa

Temperature [185-265] K

Velocity [4500-6500]  m/s

Flow Conditions for HEG-I**



Park’s 11 Species Model*
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Species: N2, O2, N, O, NO, N2 +, O2 +, N+, O+, N+, e-

*Park, C., Jaffe, R. L., & Partridge, H. (2001). Chemical-kinetic parameters of hyperbolic earth entry. Journal of 
Thermophysics and Heat transfer, 15(1), 76-90.

Total Types of Reactions 19

Dissociation 3

Exchange  2

Associative ionization 3

Charge exchange 7

Electron impact ionization 2

Electron impact dissociation 1

O2 + M <=> 2O + M;

N2 + M <=> 2N + M

NO + M <=> N + O + M



• The temporal evolutions are found to be the same for DSMC and NS.

• The impact of rarefied effects, even for the lowest Re, is negligible.

Accuracy Current Continuum Simulations over 

Double Wedge with Nitrogen

*Tumuklu, O., Levin, D. A., and Theofilis, V., “On the temporal evolution in laminar separated boundary layer shock-interaction flows using 

DSMC,” AIAA Paper 2017-1614, 2017. 

**Tumuklu, O., and Hanquist, K. M., “Temporal characteristics of hypersonic flows over a double wedge with Reynolds number,” Physics of 

Fluids, Vol. 35, No. 10, 2023.

2D, NS, 98 Pa**2D, DSMC, 98 Pa* Rarefied effects**
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Chemistry Modeling Validation HEG-I
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• Discrepancies are observed between two chemistry models.

Park 11 Species Model

Q-K 5 Species Model



Chemistry Modeling Validation HEG-1
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• Chemical reactions significantly modifies the flow field. 

• Ionization and backward reactions are modeled.



Chemistry Modeling and Grid Convergence
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Moving Forward: Amortized Inference with BayesFlow

10

• No assumptions about the types of data, parameters, or distributions are made.

• A wide range of generative network architectures is used.

• The proposed approach has great potential not only for the forward problem but also for the 

inverse problem.

• We can approximate the forward or the inverse problem by targeting 𝑝(y | 𝜽) or 𝑝(𝜽 | y), 

respectively.

BayesFlow —https://bayesflow.org



Bayesian Amortized Inference

• Generative neural networks can solve challenging inverse / forward problems in science 
and engineering (Cranmer et al., 2020).

• Fully probabilistic solutions through a Bayesian lens (i.e., posterior / likelihood estimation).

• Simulation-based training of efficient (global) neural surrogates q:

• Once trained, the neural surrogate can be efficiently queried with any parameter 

configuration.

• For this proof of concept, we use a simpler heteroskedastic loss formulation:

• We report the mean (µ) and standard deviation (σ) for each surrogate distribution.

• ϴ= (Ma, Re, ℎ0)  and 11



Dependence of Flow Field to Freestream Conditions I 
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Mach = 16.8, P∞=10 Pa, and T∞= 265 K.



Dependence of Flow Field to Freestream Conditions II 
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Mach = 16.8, P∞=90 Pa, and T∞= 265 K.



Dependence of Flow Field to Freestream Conditions III 
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Mach = 13.75, P∞=50 Pa, and T∞= 265 K.



Dependence of Flow Field to Freestream Conditions IV 
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Mach = 19.86, P∞=50 Pa, and T∞= 265 K.



Prediction of Species Concentration I
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• A logarithmic scale is used. 

• The predictions and uncertainties of log concentrations of  N, O, and NO obtained 

on a representative low-fidelity test case simulated with a freestream axial velocity 

of 5481.3 m/s, a temperature of 257.75 K, and a pressure of 67 Pa are shown.

 

• The mean predictions (𝜇) closely approximate the corresponding ground-truths, 

while the prediction uncertainty (𝜎) is faithfully high for grid points where the 

(absolute) error is high.



Prediction of Species Concentration II
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• The freestream conditions are freestream axial velocity of 5532 m/s, a 

temperature of 213.4 K, and a pressure of 41.24 Pa.

•  Even though the network is trained solely on low-fidelity simulations, it 

generalizes to high-fidelity cases reasonably well, while also achieving 

tremendous speedups in emulating the behavior of the simulator.



Normalized Mean Absolute Error
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• This graph shows the network’s performance on 80 low-fidelity and 80 high-

fidelity test cases that have never been seen.

• The maximum mean error and outliers are observed in N2 and O2

• However, errors remain bounded below 0.1 NMAE for N, O, and NO, which is a 

highly encouraging result.



Conclusions
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• The BayesFlow software was used to efficiently infer the posterior 

distributions of model parameters.

• BayesFlow can efficiently estimate the aerothermodynamic quantities of 

interest in hypersonic flows across different flight envelopes without requiring 

time-consuming simulations.

• Only forward problems have been demonstrated here, but we have the 

capability for inverse and sensitivity analysis.

• BayesFlow offers capabilities to generalize to unseen parameter 

configurations and fidelity levels, replacing traditional lookup tables in aero 

databases for broader-spectrum design applications.
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