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Motivation

Å The identification and characterization of hypersonic radiation signatures 

remain challenging tasks mainly associated with uncertainties arising from 

thermo-nonequilibrium effects, ablation of structural elements, and turbulence.

Lower Dimensionality



Hypersonic Flow Solver
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Å An open-source framework* is used to model to model.

Å The solver utilizes a first-order explicit Euler scheme for time integration and 

employs a second-order semi-discrete central scheme by Kurganov*, 
complemented by the van Leer limiter for convective fluxes.

*Kurganov, A., and Tadmor, E., ñNew high-resolution central schemes for nonlinear conservation laws and convectionïdiffusion 

equations,ò Journal of computational physics, Vol. 160, No. 1, 2000, pp. 241ï282

OpenCFD Ltd., OpenFOAM: The Open Source CFD Toolbox, 2023. URL https://www.openfoam.com, retrieved from 

https://www.openfoam.com.

Vincent Casseau, An Open-Source CFD Solver for Planetary Entry, Ph.D. Thesis, 2017. 

https://www.openfoam.com/


Numerical Schemes and Flow Conditions

Geuzaine, C., and Remacle, J.-F., ñGmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities,ò , 

2023. URL http://gmsh.info, version 4.9.4

**Knight, Doyle, et al. "Assessment of CFD capability for prediction of hypersonic shock interactions." Progress in Aerospace 

Sciences 48 (2012): 8-26.

Term Schemes

Time stepping First order Euler

Fluxes Kurganov

Gradient Gauss linear 

Divergence Gauss limited linear 

Laplacian Gauss linear corrected

Interpolation vanLeer

Surface normal 

gradient schemes

Grad(U) corrected
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Flow Parameters Range 

Pressure [10-90] Pa

Temperature [185-265] K

Velocity [4500-6500]  m/s

Flow Conditions for HEG-I**



Parkôs 11 Species Model*
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Species: N2, O2, N, O, NO, N2 +, O2 +, N+, O+, N+, e-

*Park, C., Jaffe, R. L., & Partridge, H. (2001). Chemical-kinetic parameters of hyperbolic earth entry. Journal of 
Thermophysics and Heat transfer, 15(1), 76-90.

Total Types of Reactions 19

Dissociation 3

Exchange  2

Associative ionization 3

Charge exchange 7

Electron impact ionization 2

Electron impact dissociation 1

O2 + M <=> 2O + M;

N2 + M <=> 2N + M

NO + M <=> N + O + M



ÅThe temporal evolutions are found to be the same for DSMC and NS.

ÅThe impact of rarefied effects, even for the lowest Re, is negligible.

Accuracy Current Continuum Simulations over 

Double Wedge with Nitrogen

*Tumuklu, O., Levin, D. A., and Theofilis, V., ñOn the temporal evolution in laminar separated boundary layer shock-interaction flows using 

DSMC,ò AIAA Paper 2017-1614, 2017. 

**Tumuklu, O., and Hanquist, K. M., ñTemporal characteristics of hypersonic flows over a double wedge with Reynolds number,ò Physics of 

Fluids, Vol. 35, No. 10, 2023.

2D, NS, 98 Pa**2D, DSMC, 98 Pa* Rarefied effects**
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Chemistry Modeling Validation HEG-I
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ÅDiscrepancies are observed between two chemistry models.

Park 11 Species Model

Q-K 5 Species Model



Chemistry Modeling Validation HEG-1
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ÅChemical reactions significantly modifies the flow field. 

ÅIonization and backward reactions are modeled.



Chemistry Modeling and Grid Convergence
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Moving Forward: Amortized Inference with BayesFlow
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Å No assumptions about the types of data, parameters, or distributions are made.

Å A wide range of generative network architectures is used.

Å The proposed approach has great potential not only for the forward problem but also for the 

inverse problem.

Å We can approximate the forward or the inverse problem by targeting ὴ(y | Ᵽ) or ὴ(Ᵽ | y), 

respectively.

BayesFlow ñhttps://bayesflow.org



Bayesian Amortized Inference

Å Generative neural networks can solve challenging inverse / forward problems in science 
and engineering (Cranmer et al., 2020).

Å Fully probabilistic solutions through a Bayesian lens (i.e., posterior / likelihood estimation).

Å Simulation-based training of efficient (global) neural surrogates q:

Å Once trained, the neural surrogate can be efficiently queried with any parameter 

configuration.

Å For this proof of concept, we use a simpler heteroskedastic loss formulation:

Å We report the mean (µ) and standard deviation (ů) for each surrogate distribution.

Å ⱥ= (Ma, Re, Ὤ)  and 11



Dependence of Flow Field to Freestream Conditions I 
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Mach = 16.8, Pқ=10 Pa, and Tқ= 265 K.



Dependence of Flow Field to Freestream Conditions II 
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Mach = 16.8, Pқ=90 Pa, and Tқ= 265 K.



Dependence of Flow Field to Freestream Conditions III 
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Mach = 13.75, Pқ=50 Pa, and Tқ= 265 K.



Dependence of Flow Field to Freestream Conditions IV 
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Mach = 19.86, Pқ=50 Pa, and Tқ= 265 K.



Prediction of Species Concentration I
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Å A logarithmic scale is used. 

Å The predictions and uncertainties of log concentrations of  N, O, and NO obtained 

on a representative low-fidelity test case simulated with a freestream axial velocity 

of 5481.3 m/s, a temperature of 257.75 K, and a pressure of 67 Pa are shown.

 

Å The mean predictions (‘) closely approximate the corresponding ground-truths, 

while the prediction uncertainty („) is faithfully high for grid points where the 

(absolute) error is high.


