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➢ Introduction to MHD control methods.

➢ Importance and applicability of the MHD boundary layer.

➢ Modeling an N-component hypersonic plasma with chemical 

reactions. 

➢ Pseudo-Couette preliminary analysis.

➢ Numerical validation of Pseudo-Couette analytical results.

➢ A look at high fidelity hypersonic MHD simulation with 

boundary layer profile outlook.  

➢ Concluding design considerations. 

2

Plan for the Presentation



Introduction to MHD Control

➢ Magnetohydrodynamic (MHD) control via Lorentz forces.

➢ Relies on post-shock plasma. 

➢ Blunt-nosed bodies.

➢ SSTO, Atmospheric Entry Vehicles,  Scramjet Inlet Control, Thermal Protection.

➢ Experiments and numerical studies have demonstrated viability.

➢ Entropy gradient, Crocco’s theorem, topology change.

➢ Shear stress determination and composition control.

➢ Dampening of turbulent effects, Laminarization. 

3



Vehicle Types Benefiting From Boundary Layer Control
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Modeling an N-Component Weakly Ionized Plasma

➢ A post-shock plasma consisting of N species must be modeled via a mass-averaged 

velocity term to produce equations that are computationally viable. 

➢ Mass continuity for the 𝑖𝑡ℎ species

➢ Charge continuity for the 𝑖𝑡ℎ species

➢ Momentum conservation for the 𝑖𝑡ℎ species
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Modeling an N-Component Weakly Ionized Plasma

➢ Equations may be unified via mass-averaging.

➢ Eliminates inter-species collision.
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Pseudo-Couette Hypersonic Boundary Layer

➢ At high Mach numbers 𝜃 ≈ 𝛽. 

➢ Thin shock layer interacts with boundary layer.

➢ Oblique wave driving wall.

➢ Couette boundary conditions enable for approximation of flow alterations.

➢ Constant property approximation in post-shock environment.
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Solving the Equations
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➢ Increased Hartmann numbers demonstrate 

significant alterations to the boundary 

layer. 

9

Dimensionless Boundary Layer Profile

Dimensionless boundary layer profiles for 

ℌ = 0.5, 1, 2, 3 in sequential order from left 

to right.



Numerical Validation

➢ mhdFoam solver, based on PISO algorithm.

➢ Structured rectangular mesh.

➢ Couette boundary conditions.

➢ Laminar flow. 

➢ Magnetic field implemented.

➢ No pressure gradients.

➢ Incompressible.
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Numerical Validation
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Dimensionless boundary layer 

profiles for ℌ = 0, 1, 2, 4, 6 in 

sequential order from left to 

right.

•Ahrens, James, Geveci, Berk, Law, Charles, ParaView: An End-User Tool for 

Large Data Visualization, Visualization Handbook, Elsevier, 2005, ISBN-13: 

9780123875822

•Ayachit, Utkarsh, The ParaView Guide: A Parallel Visualization Application, 

Kitware, 2015, ISBN 9781930934306



Transition to High Fidelity Numerical Methods

➢ Open source hy2Foam two-temperature chemically reacting 

CFD software coupled with MHD flux and source terms.

➢ Lorentz force, Joule heating.

➢ Low Re (m) assumption.

➢ Continuum regime, very small Knudsen number 

(continuum).

➢ Temperature power laws.

➢ Axisymmetric.
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Mesh Details and Boundary Conditions

Geometric altitude of 

29.4 km based on the 

1959 ARDC model 

atmosphere.



Electrical Conductivity Model

➢ Establishing a proper plasma electrical conductivity remains challenging in the 

analysis of MHD-Hypersonic interactions. 

➢ Temperature-based models.

➢ Hybrid temperature-electron pressure models.
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Magnetic Field Calculation
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Effective magnetic field 

strength of ~ 1.6 T



Scalar Value Maps
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Surface Viscous Shear – NEW DATA 
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For the case offered by the 

University of Strathclyde, 𝜎𝑜 =
5100 Ω−1𝑚−1, 𝑇0 = 12,000 𝐾, 𝑛 = 2

 
For the curve fit model based on 
theoretical gas calculations, 𝜎𝑜 =
4100 Ω−1𝑚−1, 𝑇0 = 12,000 𝐾, 𝑛 = 4

Yos, Jerrold Moore. "Transport properties of nitrogen, hydrogen, 

oxygen and air to 30000 K." Research and Advanced 

Development Division AVCO Corporation, Memorandum 63 

(1963).



Pseudo-Couette Model: Regions of Applicability
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Driving wall 

boundary layer 

approximation is 

only valid in select 

regions of the flow 
around a blunt-

nosed body. 



Numerically Derived Velocity Profile
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Wall slip is 

assumed to 

occur, potential 

numerical issue.

Linearity is 

invalidated close to 

the shock wave.



Methods of Enhancing MHD Interaction

➢ Alkali metal vapors.

➢ Supplementary ionic TPS systems.

➢ Surface electrodes

➢ Numerous engineering challenges.

➢ Challenging to implement for a reentry speed vehicle.

➢ Study Hall effect reduction. 
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